

ACFES MAIORES DE 23 ANOS

MATEMÁTICA

Critérios de avaliação das respostas da prova-modelo/Resolução

Justifique todas as afirmações e apresente os cálculos realizados para as obter

1

Complete a seguinte tabela

Y_i	Freq. abs. n_i	Freq. abs. ac.	Freq. rel. f_i	Freq.rel. ac. F_i
		N_{i}		
1	45			
2		75		
3		120		80%
4				

Calcule a média

Se 120 unidades correspondem a 80% da amostra e x for a quantidade de elementos da amostra então deverá ter-se 0.8x = 120 ou seja x = 150 para o valor 1 da

variável
$$N_1=n_1=45$$
 , $f_1=F_1=\frac{45}{150}=0.3$,para o valor 2 da variável

$$n_2 = 75 - 45 = 30$$
 $f_2 = \frac{30}{150} = 0.2$ $F_2 = \frac{75}{150} = 0.5$ para o valor 3 da variável

$$n_3 = 120 - 75 = 45$$
 $f_3 = \frac{45}{150} = 0.3$ e para o valor 4 da variável tem-se $n_4 = 150 - 120 = 30$ $N_4 = 150$ $f_4 = \frac{30}{150} = 0.2$ $F_4 = \frac{150}{150} = 1$ logo deverá ter-se

Y_i	Freq. abs. n_i	Freq. abs. ac.	Freq. rel. f_i	Freq.rel. ac. F_i
		N_i		
1	45	45	30%	30%
2	30	75	20%	50%
3	45	120	30%	80%
4	30	150	20%	100%

Como a média M é dada por
$$M = \frac{\sum_{i=1}^{4} n_i Y_i}{150}$$
 tem-se
$$M = \frac{45 + 2 * 30 + 3 * 45 + 4 * 30}{150} = 2.4$$

2 Determine n de modo a que se tenha $C_n^{n+3} - C_{n-1}^{n+2} = 15(n+1)$

Como
$$C_p^m = \frac{m!}{p!(m-p)!}$$
 pelos dados do problema deverá ter-se
$$\frac{(n+3)!}{n!3!} - \frac{(n+2)!}{(n-1)!3!} = 15(n+1) \text{ ou seja } \frac{(n+3)!}{n!3!} - \frac{n(n+2)!}{n(n-1)!3!} = 15(n+1)$$

e como
$$n(n-1)! = n!$$
 e $(n+3)! = (n+3)(n+2)!$ tem-se $\frac{(n+2)!(n+3-n)}{n!3!} = 15(n+1)$

e por conseguinte
$$\frac{3(n+2)!}{3!} = 15(n+1)n! = 15(n+1)! \log n \cos (n+2)! = (n+2)(n+1)!$$
 e $3! = 6 \text{ tem-se } n+2=2*15=28$

3 Calcule o seguinte limite $\lim_{n\to+\infty} \sqrt{3n+5} - \sqrt{3n+1}$

É uma indeterminação do tipo $\infty - \infty$ pelo que vamos multiplicar e dividir pelo conjugado $\lim_{n \to +\infty} \sqrt{3n+5} - \sqrt{3n+1} = \lim_{n \to +\infty} \frac{\left(\sqrt{3n+5} - \sqrt{3n+1}\right)\left(\sqrt{3n+5} + \sqrt{3n+1}\right)}{\sqrt{3n+5} + \sqrt{3n+1}}$ logo

$$\lim_{n \to +\infty} \sqrt{3n+5} - \sqrt{3n+1} = \lim_{n \to +\infty} \frac{3n+5-3n-1}{\sqrt{3n+5} + \sqrt{3n+1}} = \lim_{n \to +\infty} \frac{4}{\sqrt{3n+5} + \sqrt{3n+1}} = 0$$

4 Calcule o seguinte limite $\lim_{x\to 1} \frac{x^2 - 2x + 1}{x^2 + 2x - 3}$

Como
$$x^2 - 2x + 1 = (x - 1)^2$$
 e $x^2 + 2x - 2 = (x - 1)(x + 3)$ tem-se
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^2 + 2x - 2} = \lim_{x \to 1} \frac{x - 1}{x + 3} = 0$$

5 Seja $h(x) = \sqrt{2 + sen(x)}$ Calcule h'(x)

Se h(x) = g(f(x)) e g, f são funções diferenciáveis então pela regra da derivada da função composta tem-se que h'(x) = g'(f(x))f'(x), neste caso $g(x) = \sqrt{x}$ e

$$f(x) = 2 + sen(x)$$
 e como $g'(x) = \frac{1}{2\sqrt{x}}$ e $f'(x) = cos(x)$ tem-se que

$$h'(x) = \frac{\cos(x)}{2\sqrt{2 + sen(x)}}$$

FIM